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Separation of survival and movement rates in
multi-state tag- return and capture- recapture
models

MIJEOM JOE & KENNETH H. POLLOCK, B iomathematics Graduate

Program, Department of Statistics, North Carolina State University, USA

abstract There has been growing interest in the estimation of transition probabilities

among stages (Hestbeck et al., 1991; B rownie et al., 1993; Schwarz et al., 1993) in

tag- return and capture- recapture models. This has been driven by the increasing interest

in meta-population models in ecology and the need for parameter estimates to use in these

models. These transition probabilities are composed of survival and movement rates, which

can only be estimated separately when an additional assumption is made (B rownie et al.,

1993). B rownie et al. (1993) assumed that movement occurs at the end of the interval

between time i and i + 1. We generalize this work to allow diþ erent movement patterns in

the inter val for multiple tag-recovery and capture- recapture experiments. The time of

movement is a random variable with a known distribution. The model formulations can

be viewed as matrix extensions to the model formulations of single open population capture-

recapture and tag-recovery experiments (Jolly, 1965; Seber, 1965; B rownie et al., 1985).

We also present the results of a small simulation study for the tag- return model when

movement time follows a beta distribution, and later another simulation study for the

capture- recapture model when movement time follows a uniform distribution. The simula-

tion studies use a modi ® ed program SURVIV (White, 1983). The Relative Standard

Errors (RSEs) of estimates according to high and low movement rates are presented. We

show there are strong correlations between movement and survival estimates in the case

that the movement rate is high. We also show that estimators of movement rates to diþ erent

areas and estimators of sur vival rates in diþ erent areas have substantial correlations.

1 Introduction

Meta-populations are assemblages of local populations that are connected to each

other by occasional migration and in which long-term persistence is determined
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by the processes of local colonization and extinction (Gilpin & Hanski, 1991).

Meta-population theory is now a popular framework for understanding the threats

faced by species in fragmented habitats. Theoretical, spatially realistic, mathema-

tical models have been developed in order to make quantitative predictions about

the dynamics of meta-populations.

Interpretation of spatially structured population systems is critically dependent

on levels of migration between habitat patches (Harrison, 1994). All changes in

numbers of individuals in a de® ned population result from changes due to birth,

death, immigration, emigration, or a combination of these. Population ecologists

have devoted disproportionate attention to studying and estimating birth and death

rates and have only recently been integrating movements into explanations of how

population numbers change over time (Hestbeck, 1995). It has been hard to

make inferences concerning movement because there are limitations of data and

methodology. Recent advances in methodology have allowed estimation of transi-

tion probabilities among states in the so-called multi-state capture- recapture

models (Hestbeck et al., 1991; Brownie et al., 1993; Schwarz et al., 1993).

These transition probabilities are composed of survival and movement rates.

The separation of survival and movement rates is very important to conservation

biologists interested in meta-populations and their management (Nichols et al.,

1992). In previous work, it was assumed that movement occurs at the end of the

interval between time i and i + 1 (Nichols et al., 1992; Brownie et al., 1993). We

generalize this work to allow diþ erent movement patterns in the interval for multi-

state tag-recovery and capture- recapture experiments. The time of movement is

modelled as a random variable with a known distribution. The model formulations

in this paper are matrix extensions of the model formulations for single population

tag-recovery and capture- recapture experiments ( Jolly, 1965; Seber, 1965; Brownie

et al., 1985; Hoenig et al., 1998a, b; Hearn et al., 1998).

In the next section we develop the model. This is followed by the speci® c method

for modelling movement time. We present a simulation study for the tag- return

model and then another simulation study for the capture- recapture model. We

conclude with a general discussion section that includes suggestions for future

research including how to allow the time of movement distribution to be unknown.

2 Model de ® nition

We use the Arnason- Schwarz model (Arnason, 1972, 1973; Schwarz et al., 1993)

to describe a multiple-state tag-recovery study. While our model is completely

general, for simplicity we present a special case with a 5 2 states, A and B , with

k 5 3 recovery occasions. The model extends the Brownie et al. (1985) models to

multiple states. Matrix elements have superscripts that denote states and subscripts

that denote time or tagging occasions.

The fundamental model parameters that can be estimated, given multiple years

of recovery data, are de® ned (Brownie et al., 1993; Hestbeck, 1995) as:

u rs
i 5 the probability of being alive and in state s at time i + 1, for an animal alive

and in state r at i (transition probability),

p
r
i 5 the probability of capture at time i for an animal in state r at i (state capture

probability).

U i 5 f u
AA
i u

AB
i

u B A
i u B B

i g , i 5 1, 2 and p i 5 f p
A
i

p
B
i g , i 5 1, 2, 3
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Fig. 1. Separation of survival and movement rates. For illustration, we display the survival and movement

process for animals that begin in state A at time i and move to state B before time i + 1.

In addition, several parameters can be derived from the fundamental parameters.

The derived parameters are de® ned as:

(S
r
i )

t
5 the probability that an animal survives to time i + t, given that the animal

was alive in state r at time i,

c rs
i 5 the probability that an individual is in state s at time i + 1, given that the

animal survives to time i + t and was in state r at time i + t,

(S
s
i )

(1 2 t)
5 the probability that an animal survives to time i + 1, given that the

animal was alive in state r at time i + t and moved to state s at time i + t.

Transition probabilities are composed of survival and movement probabilities as

shown in Fig. 1. For a ® xed t we have:

u rs
i 5 (S

r
i )

tc rs
i (S

s
i )

(1 2 t)

For t from a known probability distribution f (t), we have

u
rs
i 5 ò

1

0

(S
r
i )

tc rs
i (S

s
i )

(1 2 t)
f (t) dt (1)

This is a new formulation. It is assumed that c rs
i is constant, i.e. non-dependent

on t; and S
r
i and S

s
i are constant over the interval i to i + 1.

In addition, we assume that all individuals in state r at time i surviving from i to

i + 1 must be located in a state, s 5 1, . . . , a, at time i + 1;

+
a

s 5 1

c rs
i 5 1

The statistics are de® ned as:

N
r
i 5 number of tagged animals released in state r at the beginning of the i th year,

R
rs
i j 5 numbr of animals with tags returned in state s at time j that were released

in state r at time i (i < j).

N i 5 f N
A
i

N
B
i g , R ij 5 f R

AA
i j R

AB
i j

R
B A
i j R

B B
i j g and R ii 5 f R

AA
ii

R
B B
ii g , i(< j ) 5 1, 2, 3

Also, we de® ne D(p i ) to be the diagonal matrix with diagonal elements equal to

the elements p
r
i of the parameter vector p i (see Tables 1 and 2).

In capture- recapture studies, animals are released at a point in time and captured

at a point in time, unlike tag-recovery experiments where recoveries take place over

a period of time. In addition, an animal may be captured more than once in a
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Table 1. Tag- return array

Year of recovery
Year Number

tagged tagged 1 2 3

1 N1 R11 R 12 R 13

2 N2 R 22 R 23

3 N3 R 33

Table 2. Multinomial cell probabilities of tag- return data

Year of recovery
Year of

tagged 1 2 3

1 p1 U 1D(p2 ) U 1 U 2 D(p3 )

2 p2 U 2 D(p3 )

3 p3

Table 3. Capture- recapture array

Year of recovery
Year Number

tagged tagged 1 2 3

1 N1 Ð R 12 R 13

2 N2 Ð R 23

3 N3 Ð

Table 4. Multinomial cell probabilities of capture- recapture data

Year of recovery
Year of

tagged 1 2 3

1 Ð U 1D(p2 ) U 1D(1 2 p2 ) U 2 D(p3 )

2 Ð U 2 D(p3 )

3 Ð

capture- recapture study, but may be recovered only once in a tag-recovery study.

Nevertheless, by a suitable rede® nition of the parameters, and a slight change in

data representation, similar methods may be used to estimate the parameters in

capture- recapture studies (Schwarz et al., 1993).

The expected number of recoveries in the capture- recapture formulation, in the

case of three sample times, is displayed in Table 3. If we compare Table 3 with

Table 1, we note that the diagonal elements of Table 3 are all zero, but the table

has the same general form as Table 1. Table 4 is a reformulation of Table 2 using

the tag-recovery notation.

Also, we de® ne D(1 2 p i ) to be the diagonal matrix with diagonal elements equal

to the elements (1 2 p
r
i ) of the parameter vector.

The usual assumptions for tag-recovery models, as outlined by Brownie et al.

(1985) and discussed by Nichols et al. (1982) and Pollock & Raveling (1982), are

applicable. Also there are assumptions related to the multi-state structure of the
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problem (Schwartz et al., 1993). It is assumed that no animals migrate temporarily

to a stratum where recoveries and releases do not occur, and do not return after

one or more years of absence (animals may migrate out of the sampled strata

permanently; such losses are indistinguishable from mortality); all animals behave

independently with respect to migration and recovery (it is assumed that ¯ ocking

or schooling of animals after release does not occur, or does not in¯ uence the

migration pattern of the animal); animals behave in a Markovian fashion in each

year, (i.e. the current migration route does not depend on previous migration

choices); tag-reporting rates are available with estimates of their standard errors; the

transition probability is the product of survival and movement rates in equation (1).

3 Modelling movement time

3.1 Known time of movement

Movement at the beginning or end of the inter val (t 5 0 or 1)

Previous work (Nichols et al., 1992; Brownie et al., 1993; Hestbeck, 1995) assumed

that the movement time was known and was typically at the beginning or end of

the interval (t 5 0 or 1).

When movement occurs at the beginning of the interval between time i and

i + 1, u
rs
i 5 c rs

i S
s
i for any states r and s. When movement occurs at the end of the

interval between time i and i + 1, u
rs
i 5 c rs

i S
r
i for any states r and s.

Movement within the interval (0 < t < 1)

When movement occurs at a time other than 0 or 1, u
rs
i 5 c rs

i (S
r
i )

t(S
s
i )

1 2 t for any

strata r and s. Explicit maximum likelihood estimates for survival and movement

rates do not exist and have to be estimated iteratively.

3.2 Known distribution for the movement time

Here we wish to begin modelling movement in a more realistic way. We assume

that movement occurs somewhere between the beginning and the end of the interval

and that the time of movement has a known probability density function f (t).

u rs
i 5 c rs

i ò
1

0

(S
r
i )

t(S
s
i )

1 2 t
f (t) dt

Uniform distribution

When movement time is a random variable with the uniform distribution in the

interval between time i and i + 1, f (t) 5 1 so that

u rs
i 5 c rs

i ò
1

0

(S
r
i )

t(S
s
i )

1 2 t dt

5 c rs
i S

s
i ò

1

0 ( S
r
i

S
s
i )

t

dt

5 {c rs
i S

s
i [{(S

r
i /S

s
i ) 2 1} /{ln(S

r
i /S

s
i )}] if S

r
i ¹ S

s
i

c rs
i S

s
i if S

r
i 5 S

s
i



378 M. Joe & K. H. Pollock

This is a very important case for biological reasons because it corresponds to the

movement time being random in the interval. In addition, with this strong assump-

tion, the distribution of movement time is completely determined, and no additional

parameters have to be speci® ed.

B eta distribution

When movement occurs as a random variable with the beta distribution in the

interval between time i and i + 1,

u rs
i 5 c rs

i ò
1

0

(S
r
i )

t(S
s
i )

1 2 t
f (t) dt

where f (t) is the beta probability density function with parameters, a and b , such

that a and b are known. (Of course, in practice, a and b would have to be obtained

in some manner, i.e. perhaps estimated from a radio-telemetry study. We discuss

this later.)

f (t) 5
C ( a + b )

C ( a ) C ( b )
t a 2 1(1 2 t) b 2 1

u rs
i 5 c rs

i S
s
i ò

1

0 (S
r
i

S
s
i )

t

f (t) dt

5 {c rs
i S

s
i ( 1 + +

`

k 5 1 ( *
k 2 1

r 5 0

a + r

a + b + r )
(ln (S

r
i /S

s
i ))k

k! ) if S
r
i ¹ S

s
i

c rs
i S

s
i if S

r
i 5 S

s
i

We choose this case because the beta distribution is very ¯ exible and allows

symmetric and asymmetric movement distribution for t on the unit interval (0, 1).

We also note that if a 5 b 5 1, the beta distribution reduces to the uniform (0, 1).

4 Numerical work on the tag-return model

We now present the results of a small simulation study for tag-recovery data carried

out with a modi® ed version of program SURVIV (White, 1983). We allowed the

following factors to vary in 24 ( 5 4 3 2 3 3) cases, choosing values that we thought

spanned a range of likely practical situations: (1) N, number tagged: we considered

N 5 500, N 5 1000, N 5 2000 or N 5 5000 tagged in each period; (2) c , movement

rate: we considered c 5 75% (high) or c 5 25% (low); (3) p, recovery rate: we

kept p constant over patches and years, but assigned values 0.1, 0.2 or 0.4. We

kept S (either S
A or S

B ) constant each year, assuming reporting rate equals one

eþ ectively, but it could take the following values: when p
A

5 p
B

5 0.1, S
A

5 0.8,

S
B

5 0.6; when p
A

5 p
B

5 0.2, S
A

5 0.7, S
B

5 0.5; when p
A

5 p
B

5 0.4, S
A

5 0.6,

S
B

5 0.4.

The beta distribution takes on many shapes, as the parameters a and b vary. We

tried eight cases that give asymmetric ( a > b or a < b ) and symmetric ( a 5 b )

distributions with small and large variances. The case a 5 b yields a pdf symmetric

about 1
2 with mean 1

2 (necessarily) and variance (4(2 a + 1)) 2 1. The pdf becomes

more concentrated as a increases, but stays symmetric. If a 5 b 5 1, the beta
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distribution reduces to the uniform (0, 1), showing that the uniform distribution

can be considered to be a member of the beta family. The eight cases we considered

were: ( a 5 4, b 5 2); ( a 5 8, b 5 3); ( a 5 1, b 5 1); ( a 5 2, b 5 2); ( a 5 5, b 5 5);

( a 5 8, b 5 8); ( a 5 2, b 5 3); ( a 5 5, b 5 7).

We carried out 500 simulations for each run. We calculated the relative bias of

the estimates and the relative standard errors of the estimates. We de® ne

Relative bias ( h Ã ) 5 Bias ( h Ã ) / h

Relative SE( h Ã ) 5 SE( h Ã ) /E( h Ã )

where Bias( h Ã ) 5 E( h Ã ) 2 ( h ); and SE( h Ã ) 5 {E[ h Ã 2 E( h Ã )]2 }1/2, the square root of the

variance of the estimate.

In general, the converged number is smaller (Table 5), and relative bias and

RSE being bigger (Tables 5- 7) in the case of a < b with lower capture probability

than in either a > b or a 5 b with higher capture probability, performing Monte

Carlo simulations.

We found the bias to be very small (< 2% of the true parameters except having

< 5% for SÃ
B where N 5 500, p

A
5 p

B
5 0.1, S

A
5 0.8, S

B
5 0.6) for the simulations

where c was low. For the simulations where c was high, the bias was greatest for

SÃ
B in either a > b or a 5 b (< 9% when N 5 500, < 6% when N 5 1000, < 4%

when N 5 2000, and < 2% when N 5 5000), and it is much bigger (< 13% when

N 5 500, < 10% when N 5 1000, < 10% when N 5 2000, and < 10% when

N 5 5000) in a < b . When S was held constant over the years (the reduced model),

the bias was almost halved. The biases on SÃ and cÃ , where a < b , were greater than

those in the condition of either a > b or a 5 b , the biases on SÃ being larger (Table 5).

We present the relative standard errors (RSEs, Appendix B.1-18 of Joe & Pollock,

2001) from all of our runs in low moving rate (c 5 0.25) and high moving rate

(c 5 0.75). The RSEs are smaller when more animals are tagged. The RSEs are

much smaller when p, c , S can be assumed to be constant over years, because then

Table 5. Converged numbers and Relative biases (%) of estimates of p, c , S where parameters vary

over years or those are constant over years with high moving rate (c 5 0.75), p
A

5 p
B

5 0.2, S
A

5 0.7,

S
B

5 0.5, N 5 1000 . There are three years of tag-recovery and two states

p, c , S a 5 4 a 5 8 a 5 1 a 5 2 a 5 5 a 5 8 a 5 2 a 5 5

b 5 2 b 5 3 b 5 1 b 5 2 b 5 5 b 5 8 b 5 3 b 5 7

variable 499 499 498 499 498 498 474 487

c AB
1 2 1 2 1 Ð 2 3 2 2

c BA
1

c AB
2 2 1 2 1 2 1 2 1 2 3 2 2

c BA
2 1 1 1

S
A
1 1 1 1 2 1

S
B
1 1 1 2 2 2 2 9 7

S
A
2 1 1 1 2 1

S
B
2 2 2 2 2 9 7

constant 498 500 499 499 499 497 491 499

c AB
2 2 2 1

c BA

S
A

S
B 1 1 1 1 6 5

Note: Relative biases of capture probabilities and blank in the table are less than 1%.
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Table 6. Relative standard errors (%) of estimates of p, c , S where either parameters vary over years

or those are constant over years with low moving rate (c 5 0.25), p
A

5 p
B

5 0.2, S
A

5 0.7, S
B

5 0.5,

N 5 1000. There are three years of tag-recovery and two states

p, c , S a 5 4 a 5 8 a 5 1 a 5 2 a 5 5 a 5 8 a 5 2 a 5 5

variable b 5 2 b 5 3 b 5 1 b 5 2 b 5 5 b 5 8 b 5 3 b 5 7

p
A
1 6.72 6.72 6.72 6.73 6.70 6.73 6.72 6.72

p
B
1 6.15 6.14 6.15 6.15 6.15 6.15 6.14 6.14

p
A
2 6.14 6.13 6.14 6.13 6.15 6.15 6.16 6.16

p
B
2 5.63 5.65 5.61 5.61 5.57 5.60 5.62 5.63

p
A
3 6.40 6.40 6.40 6.40 6.40 6.41 6.40 6.40

p
B
3 6.33 6.33 6.33 6.34 6.33 6.34 6.33 6.33

c AB
1 16.52 16.52 17.04 17.09 17.22 17.24 17.75 17.65

c B A
1 15.83 16.02 15.79 15.77 15.69 15.78 15.84 15.70

c AB
2 14.57 14.32 15.57 15.61 15.61 15.60 16.37 16.25

c B A
2 17.44 17.47 17.45 17.48 17.44 17.44 17.73 17.54

S
A
1 7.46 7.37 7.96 8.01 8.04 8.04 8.45 8.42

S
B
1 9.30 9.14 9.91 9.86 9.81 9.80 10.19 10.12

S
A
2 9.36 9.16 9.85 9.88 9.87 9.91 10.40 10.35

S
B
2 10.45 10.36 10.92 10.91 10.87 10.91 11.35 11.23

constant

p
A 3.72 3.72 3.71 3.71 3.71 3.71 3.72 3.71

p
B 3.57 3.58 3.56 3.56 3.56 3.56 3.57 3.57

c AB
9.77 9.57 10.38 10.41 10.38 10.43 10.94 10.78

c B A 9.99 10.27 9.97 9.96 9.96 9.94 10.02 9.95

S
A

5.16 5.08 5.51 5.54 5.56 5.56 5.84 5.81

S
B 6.24 6.20 6.66 6.62 6.62 6.61 6.83 6.79

Table 7. Relative standard errors (%) of estimates of p, c , S where either parameters vary over years

or those are constant over years with low moving rate (c 5 0.75), p
A

5 p
B

5 0.2, S
A

5 0.7, S
B

5 0.5,

N 5 1000. There are three years of tag-recovery and two states

p, c , S a 5 4 a 5 8 a 5 1 a 5 2 a 5 5 a 5 8 a 5 2 a 5 5

variable b 5 2 b 5 3 b 5 1 b 5 2 b 5 5 b 5 8 b 5 3 b 5 7

p
A
1 6.73 6.72 6.73 6.72 6.71 6.73 6.64 6.64

p
B
1 6.13 6.15 6.16 6.15 6.14 6.14 6.11 6.10

p
A
2 5.96 5.92 6.04 6.06 6.05 6.05 5.92 5.98

p
B
2 5.63 5.66 5.59 5.58 5.57 5.58 5.59 5.49

p
A
3 6.41 6.39 6.40 6.38 6.40 6.40 6.37 6.34

p
B
3 6.31 6.33 6.25 6.24 6.24 6.25 6.13 6.19

c AB
1 5.49 5.25 7.45 7.49 7.56 7.54 12.87 11.45

c B A
1 5.98 5.88 7.94 7.86 7.79 7.78 11.60 10.65

c AB
2 5.25 4.92 7.84 7.94 7.98 7.99 14.09 12.49

c B A
2 6.01 5.78 7.93 7.84 7.78 7.76 11.86 10.75

S
A
1 11.20 9.78 19.40 19.62 19.90 19.94 32.57 29.78

S
B
1 12.23 10.87 22.10 21.84 21.75 21.69 37.81 34.66

S
A
2 13.10 11.65 21.70 22.02 22.24 22.33 34.63 32.00

S
B
2 14.23 12.50 25.33 25.21 25.14 25.06 40.75 37.78

constant

p
A 3.64 3.65 3.64 3.64 3.64 3.63 3.62 3.63

p
B

3.58 3.58 3.56 3.57 3.57 3.56 3.58 3.56

c AB 3.78 3.60 5.51 5.57 5.62 5.63 11.02 9.51

c B A
4.11 4.00 5.55 5.48 5.42 5.42 9.66 8.47

S
A 8.69 7.49 15.66 15.97 16.22 16.32 29.32 26.18

S
B

9.38 8.29 17.55 17.35 17.19 17.18 24.47 30.24
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there are fewer parameters to estimate. With low moving rate, c 5 0.25, cÃ usually

has the highest RSE, and pÃ the lowest. However, with high moving rate, c 5 0.75,

SÃ usually has the highest RSE, and pÃ or cÃ the lowest (Tables 6 and 7).

The precision of the estimates improves when there is a high capture rate

(p 5 0.4) versus a low capture rate (p 5 0.1).

We have the correlations (Appendix B.19-27 of Joe & Pollock, 2001) to each case

of a > b , a 5 b , or a < b , for c 5 0.75. SÃ and cÃ for the same areas had progressively

stronger negative correlation with a range of 2 0.46 to 2 0.14 when a > b , 2 0.76

to 2 0.44 when a 5 b , or 2 0.94 to 2 0.59 when a < b . SÃ and cÃ for the diþ erent

areas had progressively stronger positive correlation with a range of 0.47 to 0.11

when a > b , 0.79 to 0.44 when a 5 b , or 0.92 to 0.60 when a < b . The correlation

of cs for diþ erent areas ((c AB
1 , c B A

1 ), (c AB
2 , cB A

2 )) was progressively more negative,

with a range of 2 0.02 to 2 0.37 when a > b , 2 0.66 to 2 0.38 when a 5 b , or

2 0.90 to 2 0.53 when a < b . The correlation of SÃ s for diþ erent areas ((S
A
1 , S

B
1 ),

(S
A
2 , S

B
2 )) was progressively more negative, with a range of 2 0.57 to 2 0.25 when

a > b , 2 0.86 to 2 0.65 when a 5 b , or 2 0.93 to 2 0.75 when a < b .

5 Numerical work on the capture-recapture model

We now present the results of a small simulation study with a uniform distribution

for capture- recapture data carried out with the program SURVIV (White, 1983).

We allowed the following factors to vary in 18 ( 5 3 3 2 3 3) cases, choosing values

that we thought spanned a range of likely practical situations: (1) N, number

tagged: we considered N 5 500, N 5 1000 or N 5 2000 tagged in each period; (2)

c , movement rate: we considered c 5 75% (high) or c 5 25% (low); (3) p, recovery

rate: we kept p constant for each patch and each year, but assigned values: 0.1,

0.2, or 0.4; (4) S
A and S

B , survival rates: we kept these constant each year, but

assigned these values: when p 5 0.1, S
A

5 0.8, S
B

5 0.6; when p 5 0.2, S
A

5 0.7,

S
B

5 0.5; when p 5 0.4, S
A

5 0.6, S
B

5 0.4.

We carried out 500 simulations for each run (18 cases). We considered the

relative bias of the estimates and the relative standard errors of the estimates as in

the last section.

We found the bias to be very small (< 2% of the true parameters in most cases)

for the simulations. For the simulations with p 5 0.1, SA 5 0.8, SB 5 0.6, the bias

was greatest for SÃ (< 14% when N 5 500, < 11% when N 5 1000 and < 7% when

N 5 2000). When S was held constant over the years (the reduced model), the bias

eþ ectively halved.

The RSEs are smaller when more animals are tagged. The RSEs are much smaller

when c , S can be assumed to be constant over the years because then there are

fewer parameters to estimate. With low moving rate, c 5 0.25, cÃ usually has the

highest and SÃ the lowest RSE. However, with high moving rate, c 5 0.75, SÃ usually

has the highest and cÃ the lowest RSE. The precision of the estimates improves

when there is a high capture rate (p 5 0.4) versus a low capture rate ( p 5 0.1).

For c 5 0.75, SÃ and cÃ for the same areas had a substantial negative correlation

with a range of 2 0.81 to 2 0.43 (c AB
i , S

B
i ), (c B A

i , S
A
i )), SÃ and cÃ for the diþ erent

areas had a substantial positive correlation, with a range of 0.83 to 0.46

(c AB
i , S

A
i ), (cB A

i , S
B
i )). The correlation of c s for diþ erent areas ((c AB

i , c B A
i )) was

substaintially negative, with a range of 2 0.85 to 2 0.51. The correlation of SÃ for

diþ erent areas ((S
A
i , S

B
i )) was strongly negative, with a range of 2 0.89 to 2 0.70

(see also Appendix B.28-30 of Joe & Pollock, 2001).



382 M. Joe & K. H. Pollock

6 An example

Iwao (1963) developed a simple model for estimating the rate of population

interchange between two areas, showing an example with the movement between

two diþ erent food plants by an adult population of insects (Epilachna

vigintioctomaculata).

Arnason (1972) developed the model further with losses due to emigration or

death occurring, but not gains due to recruitment or immigration, in order to

estimate population size, transition and capture probabilities. He used moment

equations, not MLEs. He modi® ed the data reported by Iwao (1963) to illustrate

his model. He also developed another example for much the same amount of

sampling eþ ort. He did simulations based on the modi® ed data using the estimates,

as though they were true parameters.

We attempted to analyse the insect data of Iwao (1963) but supplemented in the

way described by Arnason (1972) as a special case of our model. We had to use

the constraint of constant capture probabilities in each area (p
A
2 5 p

A
3 ; p

B
2 5 p

B
3 ) to

achieve convergence. We also did simulations based on the separation of survival

and movement rates with both losses (emigration or death) and gains (immigration

or birth). We used the method derived earlier in this chapter, and obtained MLEs.

In Table 8, we compare Arnason’ s and our models on the results of the simulation

experiment. The true values of the parameters, used to generate the data on the

computer, are given in the ® rst column. Given these values, the expected values of

the caught and marked animal numbers, such as (N
r
i , R

rs
i j ) in our model, can be

calculated. Values of the parameters were selected such that these expected values

were close to the actual observations reported by Iwao (1963). The experiment

was simulated 1000 times and, at the end of each simulation, the parameter

estimates were calculated. At the end of the experiment, the mean and variance

for each estimate was calculated. In Table 8, capture probability and transition

probability estimates (standard errors) are given.

The precision and bias of some of our estimates are much better, although those

of some of the estimates are the same.

We also computed survival and movement rates separately, which was not

done in Arnason (1972), assuming movement occurs randomly with a uniform

distribution (Table 9). The movement rates are moderate (i.e. around 30%) in all

cases.

Table 8. The estimates for Iwao insect data

True parameter Arnason’s Joe & Pollock’ s

p
A
2 0.35 0.418 (0.795) 0.428 (0.229)

p
B
2 0.60 0.670 (1.222) 0.611 (0.103)

p
A
3 0.30 0.428 (0.229)

p
B
3 0.60 0.611 (0.103)

u AA
1 0.35 0.387 (0.458) 0.345 (0.155)

u
AB
1 0.20 0.187 (0.234) 0.198 (0.065)

u B A
1 0.15 0.166 (0.322) 0.160 (0.094)

u
B B
1 0.55 0.544 (0.172) 0.546 (0.083)

u AA
2 p

A
3 (0.35)(0.3 0) 5 0.105 0.106 (0.033) 0.106 (0.032)

u
AB
2 p

B
3 (0.20)(0.6 0) 5 0.12 0.117 (0.034) 0.117 (0.035)

u B A
2 p

A
3 (0.15)(0.3 0) 5 0.045 0.045 (0.013) 0.045 (0.013)

u
B B
2 p

B
3 (0.55)(0.6 0) 5 0.33 0.329 (0.029) 0.328 (0.029)
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Table 9. The Iwao estimates with separation

of survival and movement rates

Parameter Mean (s.d.)

p
A
2 0.35 0.428 (0.229)

p
B
2 0.60 0.611 (0.103)

p
A
3 0.30 0.428 (0.229)

p
B
3 0.60 0.611 (0.103)

c AB
1 0.32 0.339 (0.135)

c BA
1 0.25 0.252 (0.118)

c AB
2 0.32 0.353 (0.126)

c BA
2 0.25 0.227 (0.098)

S
A
1 0.51 0.505 (0.161)

S
B
1 0.73 0.738 (0.093)

S
A
2 0.51 0.457 (0.173)

S
B
2 0.73 0.715 (0.108)

With SÃ and cÃ for the same areas, we found (c AB
i , S

B
i ) and (cB A

i , S
A
i ) had a

moderately positive correlation with a range of 0.56 to 0.39. (c AB
i , S

A
i ) and

(c BA
i , S

B
i ) had a negative correlation, with a range of 2 0.53 to 2 0.37, exploring

SÃ and cÃ for the diþ erent areas. The correlation of c s for diþ erent areas

((c AB
i , cB A

i )) was negative, with a range of 2 0.57 to 2 0.37.

7 Discussion

The recent interest of ecologists and conservation biologists in landscape ecology,

fragmentation and meta-population dynamics has focused their attention on patch

survival rates and between-patch movement rates. For the models described in this

chapter, the decomposition of transition probabilities into survival and movement

probabilities provides the appropriate framework for estimating parameters of

interest.

For a known distribution for movement time, t, the uniform distribution case is

important as it corresponds to random movement. The case in which movement

time is a random variable with the beta distribution requires good estimates of a

and b . These could come from biological knowledge or from putting radio tags on

the animals. Powell et al. (2000) has used radio-telemetry data and capture-

recapture data to study movement, but used a diþ erent model from our model.

Radio-telemetry has been used extensively to study animal movement in recent

years. It would be possible to use capture- recapture or tag-return methods together

with radio-telemetry to study movements within a meta-population system. For

the models described here, the decomposition of transition probabilities into

survival and movement probabilities requires a speci® c ordering of conditional

events (Fig. 1). We have assumed that the conditional movement rate does not

depend on the movement time. Additional data from telemetry animals could be

used to test this assumption. More importantly, such data could be used to relax

the assumption by permitting estimation of one survival probability for animals

that remain in a patch and another for animals that leave the patch. Of course, one

could also use the telemetry data to get an estimate of f (t), the probability density

function for movement time as in Powell et al. (2000). As we discussed earlier in

this paper, we did not consider the robustness of our inference to misspeci® cation

of the random movement distribution ( f(t)). We plan on including this aspect in

future work.
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There also needs to be more work on other assumptions, such as equal catch-

ability. There could also be work on population size estimation.
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